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Abstract
A growing number of software firms now rely on public beta testing to improve the quality of their products
before commercial release. While the benefits resulting from improved software reliability are well recognized,
some important market-related benefits have not been studied. Through word-of-mouth, public beta testers
can accelerate the diffusion of a software product after its release. Additionally, because of network effects,
public beta testers can increase users’ valuation of a product. In this study, we consider both reliability-related
and market-related benefits, and develop models to determine the optimal number of public beta testers and
the optimal duration of testing. Our analyses show that public beta testing can be profitable even if word-of-
mouth and network effects are the only benefits. Furthermore, when both benefits are considered, there is
significant “economies of scope”—the net profit increases at a faster rate when both word-of-mouth and
network effects are significant than when only one benefit is present. Finally, our sensitivity analyses
demonstrate that public beta testing remains highly valuable to software firms over a wide range of testing and
market conditions. In particular, firms will realize greater profits when recruiting public beta testers who are
interested in the software but unable to afford it.
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ABSTRACT

A growing number of software firms now rely on public beta testing to improve the
quality of their products before commercial release. While the benefits resulting from
improved software reliability are well recognized, some important market-related ben-
efits have not been studied. Through word-of-mouth, public beta testers can accelerate
the diffusion of a software product after its release. Additionally, because of network
effects, public beta testers can increase users’ valuation of a product. In this study,
we consider both reliability-related and market-related benefits, and develop models to
determine the optimal number of public beta testers and the optimal duration of testing.
Our analyses show that public beta testing can be profitable even if word-of-mouth and
network effects are the only benefits. Furthermore, when both benefits are considered,
there is significant “economies of scope”—the net profit increases at a faster rate when
both word-of-mouth and network effects are significant than when only one benefit is
present. Finally, our sensitivity analyses demonstrate that public beta testing remains
highly valuable to software firms over a wide range of testing and market conditions.
In particular, firms will realize greater profits when recruiting public beta testers who
are interested in the software but unable to afford it. [Submitted: February 19, 2015.
Revised: February 26, 2016. Accepted: February 29, 2016.]

Subject Areas: Bass Model, Network Effects, Software Reliability, and
Word-of-Mouth.

INTRODUCTION

The software market landscape has changed. Brick-and-mortar stores no longer
play a major role in distributing software products to end-users. A growing pro-
portion of software sales is delivered through the Internet, enabling end-users to
preview, test, purchase, and review software products without leaving their homes
or offices. While this new software delivery is faster and more cost-efficient, it also
brings challenges to the software market.

*The authors would like to thank the reviewers and editors of the Decision Sciences Journal for their helpful
feedback and suggestions. Additionally, we would like to thank Dr. James McElroy for providing valuable
comments. With the help of this community, our manuscript continued to improve to its present form, and
we are very grateful.

†Corresponding author.
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Analogous to physical products, the success or failure of a new software
product depends on two critical factors: (i) high product quality and (ii) a sus-
tainable market share. Even in the pre-Internet market landscape, these goals
were difficult to achieve due to rapid technological changes. Now, the Internet
has lowered the barrier of market entry, resulting in additional competition and a
more volatile market. Consequently, it is more challenging to attract a sufficient
number of users to reach a sustainable market share. Furthermore, software firms
face increasing pressure to reduce the development lifecycle (Baskerville, Levine,
Pries-Heje, Ramesh, & Slaughter, 2001). Due to the unique characteristics of soft-
ware products, quality assurance is often more difficult than for physical products.
Time pressure can further exacerbate the problem.

Fortunately, while the Internet is a major cause of the problem, it also offers
a solution. The focus of this study is on using an Internet-enabled extension of
traditional beta testing to address the aforementioned challenges.

Traditional Beta Testing Versus Public Beta Testing

Beta testing begins after alpha testing is complete and all known major issues are
resolved. Traditionally, a prerelease beta version is distributed to select members
of the user community, who then test the product in real-world environments and
report problems back to the development team. Typically, the development team
and beta testers maintain close communication throughout the testing process.

More recently, numerous software firms are using the Internet to recruit
larger numbers of beta testers. This new Internet-enabled beta testing practice is
referred to as public beta testing. Public beta testing is applicable to both system
software and application software. Some well-known examples include Microsoft’s
Windows Vista community technology previews, Google Wave and Cloud Print
(Meyer, 2009; Riofrio, 2011), and mobile applications for smart phones and tablets.
For example, some iPhone app developers publish apps on iBetaTest.com, thus
allowing testers from around the world to test the apps and report issues back to
developers. As of October 2015, iBetaTest.com listed over 16,400 beta testers from
36 countries (iBetaTest.com 2015).

In addition to the improvements in software reliability commonly associated
with traditional beta testing, public beta testing brings two important market-related
benefits. The first is improved speed of diffusion realized through the word-of-
mouth of public beta testers, and the second is increased product valuation due to
network effects.

Benefits Derived from Word-of-Mouth and Network Effects

Word-of-mouth is traditionally viewed as verbal communication between individ-
uals, but in the diffusion of innovation literature it is not limited to oral communica-
tions (Awad & Ragowsky, 2008). In the Internet age, product information spreads
through various online communication channels such as product reviews, blogs,
and social media, which are also forms of word-of-mouth. Based on their own
experiences, public beta testers share information about a new product, which can
speed up the diffusion of the product after its commercial release. Faster diffusion
can lead to a number of benefits. First, the number of adoptions during a time
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window will increase, leading to higher revenue. Second, some users may adopt
the product earlier than they would otherwise, thus increasing the present value of
sales. Third, the “critical mass” or sustainable market share can be reached sooner,
thereby reducing the risk of market failure.

Researchers have documented the marketing effects of beta testing for gen-
eral product categories, including software products (Dolan & Matthews, 1993).
Businesses have realized and taken advantage of the word-of-mouth influences of
(public) beta testers. For instance, Khan (2008) notes that beta testing can provide
the first external exposure of a new software product, and develop early adopters
to accelerate time to revenue. Google has placed some of their products in public
beta tests for up to five years, not only to create a better product, but also to lay
a foundation for a word-of-mouth marketing force (Gillin & Schwartzman, 2010,
p. 53). In fact, public beta testing is being called the “secret formula” and most
important tool for viral marketing (Gul, 2014). In a more specific example, as
a company that provides public beta testing user management as a service for
developers, Centercode (centercode.com) states that while public beta testing can
be used for product improvement, it is more often used as a marketing tactic to
increase visibility and “buzz” surrounding a prereleased product (“Centercode for
Public Betas,” 2015).

Another market-related benefit of public beta testing is the increased valua-
tion of the product, realized through network effects—the notion that a consumer
values a product more if there are a greater number of users (Katz & Shapiro,
1985). Prior studies in the network effects literature have presented empirical ev-
idences showing that more users can indeed lead to higher software prices (e.g.,
Brynjolfsson & Kemerer, 1996, Gallaugher & Wang, 1999). For instance, Bryn-
jolfsson and Kemerer find that “a one percent increase in a product’s installed
base was associated with a 0.75% increase in its price.” If public beta testers are
allowed to continue using the software after its commercial release, the network
of users increases from the outset. In addition, a higher speed of diffusion due
to the word-of-mouth of public beta testing can increase the number of adopters
throughout a product’s demand window, thus increasing the expected network size
and hence the perceived value of the product.

Related Literature

The present research is broadly related to the software development and main-
tenance literature. For instance, prior studies have examined the optimal release
policy while considering the market opportunity cost (Jiang, Sarkar, & Jacob,
2012) and the optimal software enhancement policy during a software lifecycle
(Ji, Kumar, Mookerjee, Sethi, & Yeh, 2011).

Because beta software versions may be viewed as a form of free software, it
is appropriate to briefly review the related literature. A few studies have analyzed
the benefits of offering free software from a network effects perspective (e.g.,
Haruvy & Prasad, 1998; Gallaugher & Wan 1999). Two recent articles suggest that
the benefit resulting from the word-of-mouth effect warrants offering the software
for free (Jiang, 2010; Jiang & Sarkar, 2010). Further, public beta testers may be
considered seeds in a population of potential adopters, hence this study is also



www.manaraa.com

Jiang et al. 153

related to the prior literature on network seeding to create social contagions and
network effects (Aral, Muchnik, & Sundararajan, 2013; Dou, Niculescu, & Wu,
2013).

Surprisingly, formal research on beta testing and associated decision-making
is rare. Wiper and Wilson (2006) use Bayesian statistical methods to estimate the
failure rate during the beta testing phase of a project. The proposed Bayesian model
is then applied to determine the duration of beta testing and the number of beta
testers needed. While this research considers the reliability-related benefit of beta
testing, it ignores the market-related benefits resulting from word-of-mouth and
network effects associated with public beta testing. In a more recent study that
examines the impact of software process maturity and customer error reporting on
software release policy, August and Niculescu (2013) find that with a high process
maturity and a high quality product, a software firm should delay the release of its
product as the size of beta test increases. Their study does not attempt to derive
an optimal number of beta testers or an optimal duration of beta testing. Further,
the two market-related benefits are not considered. As a result of these differences,
our findings diverge from theirs.

To date, we have not found any formal research that explicitly considers
the reliability-related benefit as well as the market-related benefits resulting from
word-of-mouth and network effects. This study fills this gap and addresses the
following questions: How many public beta testers should be recruited and how
long should public beta testing last under different market scenarios? How is the
decision affected when not all of the three benefits are present? How is the optimal
public beta testing policy affected by various environmental conditions?

We would like to emphasize that although the economic benefits derived
from software testing, word-of-mouth, and network effects are separately well
documented in different prior literature, we demonstrate the necessity to simul-
taneously consider all three benefits for public beta testing. We build on classic
models from three distinctive bodies of literature, and develop an integrated mod-
eling framework to help decide the optimal number of public beta testers and the
optimal duration of testing. Such a solution would not be possible by considering
only one benefit at a time. Finally, we study the characteristics of the optimal
solutions under different conditions.

In the next section, we introduce the models used to quantify the different
benefits of public beta testing, which will then be used to develop the integrated
modeling framework.

ADOPTED MODELS

We adopt three well-known models from three distinct bodies of literature to form
the theoretical basis for this study.

The G-O Reliability Growth Model and an Extension

In order to understand how public beta testing can improve the quality of a software
product, we need a software reliability growth model (SRGM). In the related
software reliability literature, numerous SRGMs have been proposed (Pham, 2006).
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The G-O model (Goel & Okumoto, 1979) model is widely considered to be the most
commonly used software reliability prediction model (Amin, Grunske, & Colman,
2013). Hence, we employ the G-O model to estimate the public beta testers’ bug
detection efficiency. The G-O model adopts the following key assumption:

Assumption 1: The lifetimes of all bugs are mutually independent, and the in-
stantaneous bug detection rate at any given time is proportional to the number of
undetected bugs at that time.

Assumption 1 is one of the most common assumptions in SRGMs and has
ample empirical support (e.g., Ehrlich, Prasanna, Stampfel, & Wu, 1993; Wood,
1996). The assumption implies that the time it takes to detect each bug follows
an independent and identical exponential distribution. Let the failure rate of each
bug be h, the lifetime of a bug, i.e., the time it takes to detect a bug, follows the
exponential distributiong(t) = be−ht , and the probability that the bug will be found
by time t is G(t) = 1 − e−ht . We denote the number of undetected bugs at the start
of testing by N. Based on the G-O model, the expected number of undetected bugs
at time t, denoted by u(t), equals

u(t) = Ne−ht . (1)

Assumption 2: Public beta testers evaluate the tested software independently.

This assumption is reasonable because most beta testers do not coordinate
with others on their testing activities. This assumption is not included in the G-O
model because the amount of testing resources is considered exogenous in that
model. It is needed in the present study because the number of public beta testers
is a decision variable.

Based on assumptions 1 and 2, we can calculate public beta testers’ collective
bug detection efficiency. Specifically, if we denote the average bug failure rate due
to one public beta tester’s testing by λ, and the number of public beta testers at
time t by Z, then the bug failure rate as a result of the beta testers’ collective testing
effort at time t equals h = λZ.

Suppose all public beta testing starts from time zero. If the number of bugs
at the start of testing is N, the expected number of undetected bugs at the end of
public beta testing (τ ) is

u(τ ) = Ne−λZτ . (2)

The Bass Model

The product diffusion literature in marketing centers around the seminal Bass
model (Bass, 1969). Although there are alternative diffusion models (e.g., normal
distribution, logistic distribution) in the diffusion of innovation literature, our own
research shows that the Bass model is still the most widely used model in explain-
ing the diffusion of software products (e.g., Nascimento & Vanhonacker, 1988,
Givon, Mahajan, & Muller, 1995, Teng, Grover, & Guttler, 2002, Jiang & Sarkar,
2010). We believe the reasons behind the wide adoption of Bass model are its in-
terpretability, parsimony, and wide acceptance in business research. Consequently,
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we adopt the Bass model to capture the impact of public beta testers’ influences
on the speed of software diffusion.

The Bass model assumes that the probability of a potential adopter adopting
at time t is proportional to the number of existing adopters by time t. The influence
of existing customers on potential adopters is also referred to as the word-of-mouth
effect. The Bass model can be represented by the following equation:

dF (t)/dt = [p + qF (t)][1 − F (t)]. (3)

In this model, p refers to the coefficient of innovation, and captures the
potential adopters’ intrinsic propensity to adopt or the amount of influence mass
media has on the rate of adoption; q is the coefficient of imitation, and represents
the amount of word-of-mouth influence each existing adopter exerts on potential
adopters. F(t) and f(t) in Equation (3) represent the cumulative and instantaneous
rate of adoption, and take the following forms:

F (t) = (1 − e−(p+q)t )

(q/p)e−(p+q)t + 1
, (4)

f (t) = dF (t)

dt
= (p + q)2

p

e−(p+q)t

[(q/p)e−(p+q)t + 1]2 . (5)

To keep track of the actual number of adoptions, we can rewrite Equation (3)
as

dY (t)/dt = [p + (q/m)Y (t)][m − Y (t)], (6)

where m is the market size (i.e., the total number of potential adopters who are
willing to buy the product), and Y(t) represents the cumulative number of adoptions
by time t. In addition, we use S(t) to denote the instantaneous adoption rate at time
t. As expected, Y(t) and S(t) are proportional to m at any point in time t. Hence,
Y (t) = m · F (t), S(t) = m · f (t).

Modeling the Benefit of Network Effects

Network effects commonly refers to the notion that the benefit a consumer derives
from a good increases with the number of other users of that good (Katz & Shapiro,
1985). As explained earlier, evidences of network effects have been found in many
product categories, including software products (e.g., Brynjolfsson & Kemerer,
1996).

In order to quantify the benefits of network effects, we need to know how the
network size (i.e., the number of users of a product) affects the benefit each user
receives from consuming the product. Unlike the software reliability and product
diffusion literature, the literature on network effects contains some debate on how
best to represent network effects. Swann (2002) argues that the functional form for
network effects depends, in part, on the type of network. Briscoe, Odlyzko, and
Tilly (2006) discuss Sarnoff’s law, Metcalfe’s law and Reed’s law along with a
fourth functional form. After some comparison, we adopted Metcalfe’s law because
it is the most well-known and is also the most “moderate”—the representing curve
lies approximately in the middle of the four compared curves (Briscoe et al., 2006).
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Metcalfe’s law states that the aggregate value for a two-way communications
network, such as telephone networks, is proportional to the square of the size of
the network (Gilder, 1993). Metcalfe’s law implies that the average value per
user (i.e., the aggregate value divided by the number of users) is linearly related
to the network size. Other studies suggest that the benefit a user receives from
consuming a product comes from two sources, a network-independent benefit and
an additional benefit resulting from network effects (Saloner & Shepard, 1995;
Kauffman, McAndrews, & Wang, 2000). Most software products are useful as
stand-alone applications and exhibit network effects. Therefore, based on prior
research, we propose the following functional form to represent the benefit of
consuming a software product:

υ(Q) = α + β · Q, (7)

where Q denotes the size of the network, α is the “stand-alone” benefit, and β

represents the amount of increase in benefit with each additional user joining the
network. Here we assume that α varies from user to user and follows a uniform
distribution, while β is fixed for all users. We have tried other variations (e.g.,
allowing β to vary across users, a concave instead of linear function), and the
findings are qualitatively similar.

In order to better understand the two market-related benefits of public beta
testing, in the next three sections we first ignore the reliability-related benefit. The
benefit resulting from word-of-mouth is examined in Section 3. In Section 4, we
analyze the case where both network effects and word-of-mouth are significant.
The most general case where both market-related and reliability-related benefits
are significant is discussed in Section 5. For all cases, we assume that all public
beta testers receive a complete product free of charge at the end of testing. Hence
after commercial release, they automatically become adopters of the product they
have tested.

WORD-OF-MOUTH ONLY

We first focus on public beta testers’ word-of-mouth and assume that the network
effects and their contributions to software reliability are negligible. This is a reason-
able case to consider when the focal product is not used to support communication
or coloration across users, and the quality of the beta version is sufficiently high
or the cost of software failures is sufficiently low.

Based on whether a potential adopter’s reservation price (i.e., the highest
price she is willing to pay) is higher than the sale price of a software product or
not, we classify all potential adopters of the product into two classes. A potential
adopter belongs to the high-valuation class if her reservation price is equal to or
higher than the sale price; otherwise the adopter belongs to the low-valuation class.
For simplicity, we assume an adopter’s reservation price of a product equals the
benefit received from consuming the product, as defined in Equation (7).

High-Valuation Testers Lead to Left-Shifting of Diffusion Curve

To accurately capture the effect of public beta testers’ word-of-mouth influence,
we first assume that all public beta testers are from the class of high-valuation
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Figure 1: Diffusion curves with and without beta testing.

(a)   Scenario NBT: Release without 
Beta Testing 

0 
(b)  Scenario BT: Release after Beta 

Testing 

Low diffusion rate at 
the time of release 

0 τθ = Y 1(X)  

Rate of paid 
adoptions SN(t) SB(t) Duration 

of beta 
testing

DD

potential adopters. To differentiate from the total number of public beta testers
(denoted by Z), we denote the number of high-valuation testers (i.e., those from
the high-valuation class) by X. For simplicity, we assume that the word-of-mouth
influence from each beta tester is the same as that from a paying adopter.

When all public beta testers are high-valuation adopters, each one of them
represents a loss of potential revenue to the software firm. The benefit is that their
word-of-mouth can help speed up the diffusion of the product after commercial
release. We next examine this tradeoff in detail.

For virtually all software products, there exists a finite demand window
(Cohen, Eliashberg, & Ho, 1996). Assuming that the beta version is available at
time zero, we denote the end of the demand window by D. The duration of such a
demand window is often decided by various external factors such as advancements
in hardware technology, operating systems, or competing software products. In
most cases, if a firm delays the commercial release, the end of the demand window
is unlikely to extend as well. Therefore, we assume that D is exogenous.

Public beta testers help increase the speed of diffusion after commercial
release. However, when all public beta testers are high-valuation adopters, each
tester represents a loss of revenue to the firm. This is because they might purchase
the product if they were not recruited as public beta testers. We illustrate this
tradeoff using the two release scenarios shown in Figure 1. Figure 1(a) represents
the hypothetical scenario where a software product is released without public beta
testing, which we label as scenario NBT. The diffusion curve in the figure shows
that, without the testers’ word-of-mouth, the diffusion of the new software would
start from a low rate, and thus it may take some time for the diffusion to reach a
desirable rate. In contrast, Figure 1(b) depicts the scenario where the software is
released after a public beta testing period (i.e., from time 0 to τ ), which is labeled
as scenario BT. The solid curve captures the (paid) diffusion rate after commercial
release. By comparing this curve with the one in Figure 1(a), we can see that by
conducting public beta testing, although the commercial launch is delayed, the
diffusion can start from a higher rate because of the word-of-mouth influence from
the public beta testers.
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Based on the basic premise of the Bass model, we arrive at the following
conclusion (all proofs are relegated to the Online Supplement):

Lemma 1: When all public beta testers are from the high-valuation class of
potential adopters, as a result of their word-of-mouth, the diffusion curve starting
from time τ under Scenario BT completely overlaps with the diffusion curve
starting from time θ under Scenario NBT, where θ is a function of the number of
public beta testers X:

θ = Y−1(X) = ln[(pm + qX)/(pm − pX)]

p + q
. (8)

From Lemma 1, we conclude that the effect of public beta testers’ word-of-
mouth is equivalent to left-shifting the hypothetical diffusion curve without public
beta testing by time θ . By forgoing the potential revenue from time 0 to θ under the
hypothetical curve, the firm is able to jump-start the diffusion immediately after
beta testing.

We now derive the present value of the revenue generated after beta testing.
Based on Lemma 1, we can use the diffusion rate under Scenario NBT to obtain
the diffusion rate under Scenario BT. For expositional convenience, we denote the
diffusion rates in Figures 1(a) and (b) by SN(t) and SB(t), respectively. Then,

SN (t + θ ) = SB (t + τ ) . (9)

Therefore, with a discount rate r, and a constant price ρ throughout the
demand window, the time-discounted revenue after beta testing is

Revenue (X, τ ) = ρ

∫ D

τ

SB (t) e−rt dt = ρ

∫ D−τ

0
SB (t + τ ) e−r(t+τ )dt

= ρ

∫ D−τ

0
SN (t + θ) e−r(t+τ )dt = ρ

∫ θ+D−τ

θ

SN (t) e−r(t−θ+τ )dt.

(10)

In Equation (10), e−r(t−θ+τ ) is the continuous-time discount factor. For no-
tational simplicity, the subscript “N” is omitted in the rest of the analyses.

Based on Equation (10), we analyze the hypothetical case where word-of-
mouth is the only benefit of public beta testing and all public beta testers are from
the high-valuation group of potential adopters, and derive the optimal solution and
other findings. The details are provided in Part II of the Online Supplement.

Taking into Consideration Low-Valuation Beta Testers

The left-shifting of the diffusion curve is the result of the word-of-mouth influence
of the high-valuation testers. We now examine the more realistic case where public
beta testers are recruited from both high-valuation and low-valuation potential
adopters. Here we assume that a low-valuation beta tester and a high-valuation
beta tester have the same amount of word-of-mouth influence. As defined earlier,
low-valuation potential adopters have a reservation price lower than the sale price,
implying that they would not purchase the software if charged the regular sale price.
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Therefore, by admitting low-valuation potential adopters as public beta testers, the
firm still benefits from their word-of-mouth, but does not lose any potential revenue
from them.

We denote the ratio of low-valuation to high-valuation public beta testers by
δ.i Given that X represents the number of high-valuation testers, the number of low-
valuation testers equals δX. Because the Bass model considers only those potential
adopters who can buy the product at the sale price, low-valuation potential adopters
are not counted in the market size m. Therefore, Y(t) as a function of m also counts
only high-valuation adopters. Taking into consideration the low-valuation public
beta testers (δX) not counted in Y(t), Equation (6) can be modified to:

dY(t)/dt = {p + (q/m)[Y (t) + δX]} [m − Y (t)] = [p̂ + (q/m)Y (t)][m − Y (t)],

where p̂ = p + (q/m)δX. (11)

From (11), we conclude that accounting for the word-of-mouth of the low-
valuation beta testers is equivalent to increasing the coefficient of innovation (p) by
(q/m)δX. With the higher coefficient of innovation, we have the revised diffusion
rate function,

Ŝ(t) = m(p̂ + q)2

p̂

e−(p̂+q)t

[(q/p̂)e−(p̂+q)t + 1]2 . (12)

From Equations (10) and (12), we can obtain the discounted revenue gener-
ated throughout the demand window when both low-valuation and high-valuation
beta testers are considered:

Revenue (X, τ ) = ρ

∫ θ̂+D−τ

θ̂

Ŝ (t) e−r(t−θ̂+τ )dt, (13)

where θ̂ = ln[(p̂m+qX)/(p̂m−p̂X)]
p̂+q

.
As is common in the literature on economics of information goods, we

assume that the marginal cost of producing an additional software copy is zero.
Because we ignore the reliability-related cost and benefit in this section, the net
profit derived from the software product during the demand window, denoted by
V(X, τ ), equals the time discounted revenue shown in Equation (13). Therefore,
the public beta testing decision problem is formulated as

Max
X,τ

V (X, τ ) = ρ

∫ θ̂+D−τ

θ̂

Ŝ(t)e−r(t−θ̂+τ )dt,

s.t. Ŝ(t) = m(p̂ + q)2

p̂

e−(p̂+q)t

[(q/p̂)e−(p̂+q)t + 1]2 ,

θ̂ = ln[(mp̂ + Xq)/(mp̂ − Xp̂)]

p̂ + q
,

p̂ = p + (q/m)δX. (14)

i We assume that the value of δ depends on the demographics of the underlying potential adopter population,
and can be estimated from previous data or using survey methods.
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Here, Ŝ(t) is the sales rate at time t, e−r(t−θ̂+τ ) is the discount factor, θ̂ represents
the amount of left-shifting illustrated in Figures 1 and discussed in Lemma 1, and
p̂ captures the “extra” word-of-mouth influence of the low-valuation public beta
testers.

Theoretically, when the reliability-related benefit is absent, the optimal public
beta testing duration is zero, i.e., τ ∗ = 0. In practice, this means that a firm should
just try to recruit the optimal number of testing as quickly as possible. Therefore,
in this and the next section, we focus on deriving the optimal number of public
beta testers. Due to its complexity, a closed-form solution for problem (14) cannot
be derived; however, we are able to obtain several analytical findings:

Proposition 1: If public beta testers’ word-of-mouth effect is the only benefit of
public beta testing, the optimal number of high-valuation beta testers (X*) and the
net profit under the optimal solution (V*) always increases proportionally with the
target market size (m), i.e., X∗(m) = km, V ∗(m) = lm, where k and l are positive
constants independent of m.

From Proposition 1, we conclude that when word-of-mouth effect is the only
benefit, there is no “scale economy” — the optimal number of public beta testers
and the net profit both increase at exactly the same rate as the market size.

Besides Proposition 1, we are able to identify some analytical properties
regarding the impact of the key model parameters on the optimal solution. To reduce
repetition, they will be discussed under the most general problem formulation
presented in Section 5.

In the absence of a closed-form solution, we resort to a numerical method
to obtain the optimal solution. In order to determine the optimal number of public
beta testers and the optimal duration of public beta testing (i.e., X* and τ *), we need
to know (i) the diffusion curve after release, determined by the three parameters m,
p, and q, (ii) the number of undetected bugs at the start of beta testing (N) and the
average bug failure rate due to a beta tester’s testing (λ), and (iii) the unit cost of an
undetected bug (c). Among these parameters, the diffusion path can be projected
based on data for analogous products (Bayus, 1993; Bass, Gordon, Ferguson, &
Githens, 2001). The parameters N and λ can be estimated from bug detection data
for similar products or initial bug detection data for a new product. The expected
cost of a software failure can be estimated by domain experts. This cost should
include both the direct cost of identifying and fixing the bug and the indirect cost
such as liability cost and the loss of goodwill resulting from a software failure.

As no prior study has taken into consideration both software reliability growth
and software diffusion, we are unable to find any diffusion data and bug detection
data for the same software project. Instead of using randomly generated values,
we estimate the key parameter values based on data for multiple real-world soft-
ware products. The coefficient of innovation and coefficient of imitation are first
estimated from a spreadsheet sales data for United Kingdom (Givon et al., 1995)
as p1 = .002, q1 = 0.648. In addition, we estimate the two coefficients based on
data for two apps from Apple’s App Store (Words with Friends and Tiny Tower).
The average coefficient values for the two apps are p2 = .133, q2 = 1.34. These
parameter values imply a much faster diffusion rate. Numerical analyses based
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on the “slow” and “fast” coefficient values lead to qualitatively similar findings
under most cases. Instead of reporting two separate results, we choose to use the
averages of the two sets of parameter values in our following numerical analyses
(i.e., p = .067, q = 0.992). The market potential (i.e., the number of high-valuation
potential adopters) is assumed to be m = 1 million. In addition, we assume that
there are equal numbers of low-valuation and high-valuation public beta testers,
i.e., δ = 1.0.

The expected number of undetected bugs at the start of beta testing equals
N = 500 and the bug detection rate per thousand public beta testers is λ = 0.1.
These two parameters are estimated and adjusted based on bug detection data for
a real-time control software (Pham, 2006, pp. 144–145). The expected cost of
a software failure c, is assumed to be $50,000. The price of the software (ρ) is
set to $50 and the duration of the demand window (D) is 10 years. The annual
discount rate (r) is assumed to be 6%. Unless otherwise noted, the aforementioned
parameter values are used in all numerical analyses of this study.

Based on these parameter values, we obtained the following optimal solu-
tion: the optimal number of high-valuation public beta testers is X* = 16.0 K
(thousand), and the resulting net profit is V* = $42.63 million. As explained ear-
lier, the optimal testing duration is zero when the reliability-related benefit is not
considered. In this case, public beta testers are recruited solely to take advantage
of their word-of-mouth effect. The solution confirms that public beta testing can be
beneficial (otherwise we should have X* = 0), even if the word-of-mouth is its only
benefit.

BOTH WORD-OF-MOUTH AND NETWORK EFFECTS

In this section, we examine the benefits of public beta testing resulting from
network effects and word-of-mouth while still ignoring the benefit derived from
improved software reliability. Given the benefit derived from word-of-mouth has
already been analyzed in Section 3, we first show how the benefit of network
effects can be modeled. For simplicity, we assume that each public beta tester and
each future buyer contribute equally to network effects.

Quantifying the Benefit of Network Effects

To isolate the benefit derived from network effects, we temporarily ignore public
beta testers’ word-of-mouth, i.e., network effects represent the only benefit of
public beta testing.

The number of adopters we use to calculate network effects is different
from that used to calculate the amount of word-of-mouth effect at a given time.
This is because future adopters can increase the utility of current adopters due
to network effects whereas future adopters have no word-of-mouth influence on
current adopters. According to Economides (1996), in the presence of network
effects, a user’s valuation of a product depends on “the expected number of units
of goods to be sold.” Therefore, we let the network size that determines a user’s
valuation equal the total number of adopters by the end of the demand window
D. Now, suppose that as a result of recruiting public beta testers, the network size
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Figure 2: How to take advantage of high consumer valuation?
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increases by 
Q. Because of network effects, every potential adopter’s reservation
price also increases. Based on (7), the amount of increase, denoted by 
υ, equals


υ = β · 
Q. (15)

We next examine the financial implication of a higher reservation price. As
defined in Section 3, high-valuation potential adopters are those with a reservation
price higher than the sale price. Therefore, the number of high-valuation potential
adopters depends on both the sale price and users’ reservation price. With every-
one’s reservation price fixed, the number of high-valuation potential adopters is
expected to decrease as the price increases. This relationship can be represented
by the monotonically decreasing demand curve m(price) shown in Figure 2. From
this figure, we can see that if the sale price is set to the “base” price ρ, the number
of high-valuation potential adoptions equals m(ρ). For notational simplicity, we
let m � m(ρ). Now, if every potential adopter’s reservation increases by β · 
Q,
the demand curve shifts upward to m̃(price). Facing this higher demand curve, a
firm has a number of options. They can (i) raise the price by β · 
Q to take full
advantage of the increased consumer valuation (the market size remains the same
at m), (ii) keep the original price ρ to enjoy a large market size m′, or (iii) select a
price, market size point {m*, ρ*} that maximizes the total profit. In this section, we
focus on the first option. The third option is more complex and will be analyzed in
Section 5.

We still assume that a firm recruits (1+δ)X public beta testers, among which
X are from the high-valuation class, and δX are from the low-valuation class.
Because all X public beta testers are recruited from the m high-valuation potential
adopters and they will receive the product for free as an incentive, there will be
(m – X) potential adopters remaining after the commercial version is released.

Without the word-of-mouth effect of beta testers, the left-shifting illustrated
in Figures 1(a) and (b) is not applicable. Because the number of remaining potential
adopters decreases from m to (m−X), the rate of paid adoptions after public beta
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testing becomes (m − X)f (t), hence the total number of paying adopters by the
end of the demand window is

(m − X)F (D − τ ), (16)

where f(t) and F(t) are defined in (4) and (5), respectively. By counting both the
paying adopters and the public beta testers, the total network size by the end of
demand window D becomes

Q(X) = (m − X)F (D − τ ) + (1 + δ)X. (17)

Without public beta testers, the network size by the end of demand window
is Q(0) = mF (D). Hence, increasing the number of testers from 0 to X grows the
eventual network size by


Q = Q(X) − Q(0) = [(m − X)F (D − τ ) + (1 + δ)X] − m · F (D)

= X[1 − F (D − τ )] − m[F (D) − F (D − τ )] + δX. (18)

From Equation (18), it is clear that all else being equal, recruiting low-
valuation public beta testers strictly increases the network size at the end of the
demand window. We would like to point out, however, that 
Q can be negative
under certain conditions (e.g., when the testing duration is long), in which case the
curve for m̃(price) will be below that for m(price).

Due to network effects, a larger (smaller) network size leads to a higher
(lower) product valuation. In order to maintain the same number of high-valuation
potential adopters, the sale price needs to be changed.

Lemma 2: If network effects are present while the public beta testers’ word-of-
mouth effect is absent, a firm can change its product price while maintaining the
same number of high-valuation adopters. Specifically,

m̃(ρ ′) = m(ρ) , if ρ ′ = ρ + βX[1 − F (D − τ )]

−βm[F (D) − F (D − τ )] + βδX. (19)

Based on Lemma 2, we analyze the hypothetical case with network effects
as the only benefit of public beta testing, and derive the optimal solution. We find
that the market size is above a threshold, the optimal number of high-valuation
beta testers (X*) is a linear function and the net profit under the optimal solution
(V*) is a quadratic function of the target market size (m). The details are provided
in Part II of the Online Supplement.

Optimal Policy with Both Word-of-Mouth and Network Effects
Considered

With public beta testers’ word-of-mouth and their contribution to network effects
both taken into account, we next show how the optimal public beta testing solution
can be obtained.
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Without their word-of-mouth effect, public beta testers’ impact on the net-
work size is given by (18). Now, with their word-of-mouth considered, and
diffusion accelerating, the expected network size by the end of the demand window
should further increase. Similar to Lemma 2, we are able to arrive at the following
conclusion:

Lemma 3: If public beta testers’ word-of-mouth and network effects are both
present, then

m̃(ρ ′) = m(ρ ′) , if ρ ′ = ρ + β[mF̂ (θ̂ + D − τ ) − mF (D) + δX], (20)

where p̂ = p + (q/m)δX,F̂ (t) = (1−e−(p̂+q)t )
(q/p̂)e−(p̂+q)t+1 , and θ̂ = ln[(mp̂+Xq)/(mp̂−Xp̂)]

p̂+q
.

This lemma reflects the joint benefits of word-of-mouth and network effects.
The word-of-mouth effect can lead to a larger network by the end of the demand
window, thus allowing a firm to charge a higher price while still maintaining the
same number of high-valuation potential adopters. Note that in Equation (20), the
coefficient of innovation is increased from p to p̂ to reflect the word-of-mouth of
low-valuation testers (see Equation (11). As a result, the amount of left-shifting
and the cumulative adoption function are revised as well.

Based on Lemma 3, we have the formulation for the scenario where both
word-of-mouth and network effects are significant:

Max
X,τ

V (X, τ ) = ρ ′ ·
∫ θ̂+D−τ

θ̂

Ŝ(t)e−r(t−θ̂+τ )dt,

s.t.Ŝ(t) = m(p̂ + q)2

p̂

e−(p̂+q)t

[(q/p̂)e−(p̂+q)t + 1]2 ,

ρ ′ = ρ + β[mF̂ (θ̂ + D − τ ) − mF (D) + δX],

F̂ (t) = (1 − e−(p̂+q)t )

(q/p̂)e−(p̂+q)t + 1
,

θ̂ = ln[(mp̂ + Xq)/(mp̂ − Xp̂)]

p̂ + q
,

p̂ = p + (q/m)δX. (21)

Problem (21) is a generalization of problem (14); when β = 0, the former
reduces to the later.

Again, despite lack of a closed-form solution, we are able to obtain several
analytical findings. First, in contrast to Propositions 1, we have the following
conclusion:

Proposition 2: If word-of-mouth and network effects are the only benefits of
public beta testing and public beta testing is beneficial, the optimal number of high-
valuation beta testers (X*) and the net profit (V*) both increases at an increasing
speed with the target market size (m), i.e.,

dX∗ (m)

dm
> 0,

d2X∗ (m)

dm2
> 0,

dV ∗ (m)

dm
> 0, and

d2V ∗ (m)

dm2
> 0 . (22)



www.manaraa.com

Jiang et al. 165

We have found that when only word-of-mouth or network effects (see Part
II of Online Supplement) are present, the optimal number of high-valuation beta
testers increases linearly with the potential market size. When both word-of-mouth
and network effects are considered, Proposition 2 shows that it is optimal to increase
the number of high-valuation public beta testers at a faster pace than the rate of
increase in market size. Although recruiting more high-valuation testers leads to
a larger loss of potential revenue, the net profit still grows at a higher rate than
under the cases when only one benefit is present. This is similar to the notion of
“economies of scope” in economics. The reason behind this compounding effect is
as follows. The word-of-mouth effect increases the speed of diffusion, which not
only can increase the number of product sales, but also necessarily leads to a larger
network size and subsequently a higher valuation for the product. The network
effects, in turn, make the increased speed of diffusion even more valuable because
each additional buyer can bring in a higher profit to the firm.

We adopt the same parameter values used in the previous section, and find
that the optimal number of high-valuation public beta testers is X* = 283.3K and
the resulting net profit is V* = $52.89 million. Owing to network effects, the sale
price can be increased from $50 to $78.3. By comparing this solution with the
previous solution (X* = 16.0K, V* = $42.63 million when word-of-mouth is the
only benefit), we can see that the optimal number of public beta testers and the net
profit are both significantly higher when both market-related benefits are present.
This confirms the existence of economics of scope associated with the benefits of
public beta testing.

ALL BENEFITS CONSIDERED

In this section, in addition to word-of-mouth and network effects, we also take
into account the benefit resulting from public beta testers’ contribution to software
reliability.

Impact of Public Beta Testing on Software Reliability

The benefit resulting from improved software reliability is measured by the reduc-
tion in the cost of software failures in the field, which includes both the direct cost
of fixing the bug and indirect costs such as potential liability and loss of goodwill.
Consistent with the existing literature (e.g., Dalal & Mallows, 1988; Ehrlich et al.,
1993), we assume that the total cost of software failures in the field is a linear
function of the number of undetected bugs at the time of release, and we denote
the expected cost of software failure caused by each undetected bug by a.

We assume that each of the (1+δ)X public beta testers has the same bug
detection efficiency, regardless of whether the tester belongs to the low-valuation
or high-valuation class. Based on Equation (2), the total expected cost of software
failures equals

C1(X, τ ) = aNe−λ(1+δ)Xτ . (23)
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Note that even if a bug is detected during beta testing, fixing it still incurs a
cost. We denote the average cost of fixing a bug detected during beta testing by b.
Then, the total cost of fixing bugs detected during public beta testing is

C2(X, τ ) = bN(1 − e−λ(1+δ)Xτ ). (24)

As the cost is expected to be higher if a bug is detected after the product is
released, we denote the difference between the two costs by c (i.e., c = a – b).
For expositional convenience, we refer to c as the unit cost of an undetected bug.
Then, the sum of the cost of fixing bugs detected during beta testing and the cost
of software failures equals

C(X, τ ) = bN(1 − e−λ(1+δ)Xτ ) + aNe−λ(1+δ)Xτ

= bN(1−e−λ(1+δ)Xτ ) + (b + c)Ne−λ(1+δ)Xτ = bN + cNe−λ(1+δ)Xτ . (25)

In the RHS of Equation (25), the term bN is a constant with respect to X and
τ , hence it does not affect the optimal value of the decision variables. Furthermore,
the cost of fixing a bug detected during public beta testing is significantly lower
than the cost of software failure caused by the same bug after the product is released
(i.e., b<<a). Therefore, the first term bN is insignificant compared to the second
term cNe−λ(1+δ)Xτ . For simplicity and clarity, we consider only the second term in
our subsequent analyses. This term essentially represents the consequence of not
detecting all bugs before release. We denote this cost by BugCost(X, τ ) and refer
to it as the total cost of undetected bugs:

BugCost (X, τ ) = cNe−λ(1+δ)Xτ . (26)

Price as a Decision Variable

In the previous two sections, we have focused on the first option illustrated in
Figure 2, i.e., assuming that price is set at a level such that the number of high-
valuation potential adopters remains the same even as consumer valuation of the
product increases. In this section, we consider the third option shown in Figure 2,
where we assume that the price itself is a decision variable to be optimized.

If the demand function without network effects is

m(price) = M − k · price, (27)

as shown in the proof of Lemma 3, the demand function with network effects
considered is

m̃(price) = M − k · price + kβ · 
Q

= M − k · price + kβ[mF̂ (θ̂ + D − τ ) − mF (D) + δX], (28)

where p̂ = p + (q/m)δX,F̂ (t) = (1−e−(p̂+q)t )
(q/p̂)e−(p̂+q)t+1 , and θ̂ = ln[(mp̂+Xq)/(mp̂−Xp̂)]

p̂+q
.

Problem Formulation and Solution

By subtracting the cost of undetected bugs as shown in Equation (26) from the
objective function of problem (21), and incorporating the new demand function
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(28), we obtain the formulation for the general case where all three benefits of
public beta testing are present:

Max
X,τ,price

V (X, τ, price) = price ·
∫ θ̂+D−τ

θ̂

Ŝ(t)e−r(t−θ̂+τ )dt − cNe−λ(1+δ)Xτ ,

s.t. Ŝ(t) = m̃(p̂ + q)2

p̂

e−(p̂+q)t

[(q/p̂)e−(p̂+q)t + 1]2 ,

m̃ = M − k · price + kβ[mF̂ (θ̂ + D − τ ) − mF (D) + δX],

F̂ (t) = (1 − e−(p̂+q)t )

(q/p̂)e−(p̂+q)t + 1
,

θ̂ = ln[(mp̂ + Xq)/(mp̂ − Xp̂)]

p̂ + q
,

p̂ = p + (q/m)δX. (29)

It can be shown that Proposition 2 remains valid for (29). Furthermore, given
X and τ , we can derive closed-form expressions for the profit maximizing price
and market size.

Proposition 3: With all three benefits of public beta testing considered, given X
high-valuation potential adopters and a testing duration τ , the optimal sale price
and the corresponding market size are, respectively,

ρ̂ = M/(2k) + β[mF̂ (θ̂ + D − τ ) − mF (D) + δX]/2, (30)

m̂ = M/2 + kβ[mF̂ (θ̂ + D − τ ) − mF (D) + δX]/2. (31)

Corollary 1: If ρ is the optimal price without network effects, and ρ ′ is the
price that keeps the number of high-valuation potential adopters unchanged in
the presence of network effects (see Lemma 3), then the optimal sale price with
network effects considered is (ρ + ρ ′)/2.

Corollary 1 essentially provides an answer to the optimal {price, market size}
point we are seeking in Figure 2, i.e., if ρ was the optimal price without network
effects, the best price with network considered lies precisely in the middle of ρ

and ρ ′ shown in the figure.
Based on Proposition 3, we can simplify (29) to a problem with two decision

variables:

Max
X,τ

V (X, τ ) = ρ̂ ·
∫ θ̂+D−τ

θ̂

Ŝ(t)e−r(t−θ̂+τ )dt − cNe−λ(1+δ)Xτ ,

s.t.Ŝ(t) = m̃(p̂ + q)2

p̂

e−(p̂+q)t

[(q/p̂)e−(p̂+q)t + 1]2 ,

m̂ = M/2 + kβ[mF̂ (θ̂ + D − τ ) − mF (D) + δX]/2,

ρ̂ = M/(2k) + β[mF̂ (θ̂ + D − τ ) − mF (D) + δX]/2,



www.manaraa.com

168 The Economics of Public Beta Testing

Figure 3: Impact of the coefficient of innovation (p).

F̂ (t) = (1 − e−(p̂+q)t )

(q/p̂)e−(p̂+q)t + 1
,

θ̂ = ln[(mp̂ + Xq)/(mp̂ − Xp̂)]

p̂ + q
,

p̂ = p + (q/m)δX. (32)

Using the previous parameter values, and letting M = 2 million and k = 20,
we obtain the following solution: X* = 367.2K, τ * = 0.18 years, and V* = is $55.56
million. Due to the increased network size, the price is raised from $50 to $68.38,
and the number of high-valuation potential adopters increases from 1 million to
1.37 million. As expected, when the reliability-related benefit is considered, a
positive public beta testing duration is warranted.

Sensitivity Analysis

Even with both market-related and reliability-related benefits considered, public
beta testing is not guaranteed to be beneficial. When it is indeed beneficial (i.e.,
X* > 0), the impacts of several key model parameters on the net profit are summa-
rized in the following proposition:

Proposition 4: With all benefits considered, the net profit under the optimal
solution (V*) increases monotonically with the coefficient of innovation (p), the
coefficient of imitation (q), the ratio of the low-valuation to high-valuation public
beta testers (δ), and the bug failure rate (λ), whereas it decreases with the unit cost
of undetected bug (c).

We conduct sensitivity analyses for all key model parameters in problem
(32). Due to space limitation, we only present results for five of them.

In the Bass model, the coefficient of innovation (p) and the coefficient of
imitation (q) jointly determine the speed of diffusion. As the impacts of the two
parameters are similar, we only present the sensitivity analysis result for p, as
summarized in Figure 3. The left chart shows the number of beta testers (in
thousands) and the duration of public beta testing (in days). The right chart displays
the net profit (in millions of dollars) and the sale price. From these results, we
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Figure 4: Impact of sensitivity of reservation price to network size (β).

can see that as the value of p increases, the optimal number of high-valuation
public beta testers tends to decrease while the duration of public beta testing tends
to increase. This is because with a higher p value, each tester’s word-of-mouth
influence is larger, hence a smaller number of beta testers are sufficient to speed
up the diffusion. Therefore, the firm can recruit fewer testers to reduce the loss
of potential revenue. To ensure that the desired reliability is attainable, though,
the testing duration should be extended. Figure 3 also shows that the pricing
curve closely follows the curve representing X*. This is because when the ratio
of low-valuation to high-valuation customers is fixed, a smaller X* implies fewer
low-valuation public beta testers are recruited, thereby decreasing the eventual
network size and subsequently the sale price. With all factors considered, the net
profit turns higher as the value of p increases.

In our model, the parameter β reflects the sensitivity of users’ reservation
price in response to changes in the network size. A higher β implies that the
reservation price increases more rapidly as the network size grows. To evaluate
the impact of this parameter on the optimal solution, we vary the value of β from
0.00625 (low increase in reservation price) to 0.4 (high increase in reservation
price), and repeat the analysis. Figure 4 shows the results. We observe that as the
value of β increases, it becomes beneficial to recruit more public beta testers. This
is because each additional public beta tester becomes more valuable as the value of
β increases. The optimal testing duration decreases because with more testers, the
desired level of reliability is reached sooner. A larger number of beta testers also
imply a bigger word-of-mouth effect, which leads to a faster speed of diffusion.
Similarly, more testers lead to a larger network size, thus allowing the firm to
charge a higher price. Although more high-valuation beta testers cause a higher
loss of potential revenue, the loss is more than offset by a faster speed of diffusion
and a higher sale price. The net profit increases monotonically as a result.

The ratio of the low-valuation to high-valuation public beta testers (δ) de-
pends on the percentage of low-valuation potential adopters in the population. It
may also be controlled if the firm is able to identify certain low-valuation potential
adopters. In order to understand the impact of this ratio, we repeat the numerical
analysis while varying the value of δ from 1/8 to 8. The results are summarized in
Figure 5. We can see that the optimal number of high-valuation public beta testers
increases with δ. The total number of public beta testers, which include both
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Figure 5: Impact of ratio of low-valuation to high-valuation beta testers (δ).

Figure 6: Impact of bug detection efficiency (λ).

high-valuation and low-valuation testers, increases at an even higher speed. Due
to the large number of testers, the optimal testing duration decreases significantly,
and the sale price increases due to network effects. As a result of a shorter testing
duration, quicker speed of diffusion, and higher sale price, the net profit increases
monotonically with a larger δ value. This is expected because all else being equal,
more low-valuation public beta testers is always more beneficial. Therefore, un-
less it is very costly to target them, a firm should try to increase the proportion of
low-valuation testers when recruiting public beta testers.

The parameter λ represents the public beta testers’ bug detection efficiency.
The sensitivity analysis results for λ are shown in Figure 6. We conclude from the
figure that if bugs are easier to detect or if the beta testers are more efficient at bug
detection, both implying a higher λ, the firm can recruit fewer high-valuation public
beta testers and reduce the duration of public beta testing. The sale price decreases
because fewer beta testers imply a smaller network size. However, because the firm
can start selling the product sooner, and the loss of potential revenue due to free
adoption by high-valuation public beta testers is smaller, the net profit increases.

Depending on how mission-critical a software product is, the cost of an
undetected bug can vary greatly. In order to understand how sensitive the solution
is to the unit cost of an undetected bug, we vary the value of c from $6.25K
to $400K. The results are summarized in Figure 7. As expected, as the cost of
undetected bugs increases, the optimal number of public beta testers also increase
and testing lasts longer. With more testers admitted, the network size increases,
and the firm can charge a higher price. However, because more testers lead to a
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Figure 7: Impact of the unit cost of an undetected bug (c).

larger loss of potential revenue, and software failures are costlier, the expected
profit decreases.

CONCLUDING REMARKS

With the accessibility of the Internet and the expanding mobile application en-
vironment, public beta testing has gained tremendous popularity in the software
industry. This study provides an in-depth analysis of both the reliability-related
and the market-related benefits of public beta testing. We show that in addition
to improved software quality, market-related benefits accrue because public beta
testing can speed up product diffusion and increase potential users’ valuation of a
software product.

Both the methodologies and findings of this study are of practical signifi-
cance. The new software landscape with online access to software products requires
a new way of thinking—specifically, closing the gap between marketing and devel-
opment. The traditional model of develop-test-market will handicap firms in this
new software era. Firms can also take advantage of public beta testing to improve
their product quality and secure a better market position in an increasingly volatile
and competitive marketplace. In addition to demonstrating the importance of pub-
lic beta testing, the models developed in this study can help firms make informed
public beta testing decisions under different scenarios.

Another novel aspect of this study is that it draws on theories and models from
three distinct bodies of literature: the software reliability literature from software
engineering, the diffusion literature from marketing, and the network effects litera-
ture from economics. Taken together, these widely accepted theories/models allow
us to illustrate the benefits of public beta testing. They also form the theoretical
foundation for future studies on public beta testing.

There exist several interesting future research directions. For instance, we
currently assume that all public beta testers will receive an unrestricted version
of the tested software product. It would be interesting to analyze how the optimal
solution is affected if the beta version can only be used for a limited period of
time. Similarly, in this study we do not model consumers’ strategic behaviors in
response to public beta testing. In a future study, it may be possible to take into
consideration consumers’ intentions to maximize their own utility and examine the
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subsequent impact on firms’ optimal public beta testing policy. In yet another direc-
tion, one could incorporate software versioning and price discrimination into our
model, examine how the different segments of the market are affected by network
effects, and then derive the optimal public testing policy for this more complex
scenario.

SUPPORTING INFORMATION

Additional supporting information may be found in the online version of this article
at the publisher’s website:

Online Supplements
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